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The plane problem of the reflection and refraction of plane longitudinal waves at the interface of a liquid and a solid anisotropie 
half-space with elastieiq, constants which satisfy the condition N = (a - d)b - c 2 < 0, is investigated. The expression of the solutions 
of the problem in terms of the inverse apparent velocities of the waves and the unique determination on a Riemann surface 
enables a detailed anal]~ieal investigation to be made of the kinematic behaviour of the wave processes in question for different 
ratios of the elasticity constants of the contacting media. It is established that for certain angles of incidence the longitudinal 
waves ex.eite two refracted quasi-transverse waves with different normal velocities and angles of refraction. This feature is directly 
related to the existence of aeute-angied edges on the fronts of the quasi-transverse waves from a point source when N < 0. 
O 1997 Elsevier Seienoe Ltd. All rights reserved. 

In [1, 2], using Smirnov's and Sobolev's method, applied for the first time to Sveklo anisotropie media 
[3], we investigated the plane problem of the reflection and refraction of plane longitudinal waves at 
the interface of a liquid and a solid anisotropic half-space with four elasticity constants satisfying the 
condition N > 0. In this paper we extend the investigation of this problem to anomalous media satisfying 
the condition N < 0. In these media, the wave processes considered behave in a more complex way 
and require a special approach. 

1. P L A N E  W A V E S  IN A N I S O T R O P I C  M E D I A  

P l a n e  w a v e s  in an  a n i s o t r o p i c  m e d i u m  w i t h  f o u r  e las t ic i ty  cons t an t s  can  b e  e x p r e s s e d  by  the  f u n c t i o n s  
[2] 

u k = u(f~) ,  v k = v ( ~ ) ,  f ~  = t + 0x + ~kY (1.1) 

where 

~'k = {H + ( - 1 )  k [ n  2 - (a /b) ( l /a  - 0 2 (1 ] d -  0 2 ) ) ]~ }~ 

H = [(b + d) - (ab + d 2 - c2)02]/(2bd) 

(1.2) 

The functions are subject to the conditions 

- u (  £2~ )/(c03, k ) = v ([2~ )/ Pk = w(  f2~. ) 

Pk ---- a02 -I- d~, 2 - 1 (1.3) 

The function w is an arbitrary continuous doubly differential function if the coefficients of w for 
variable quantities are real. If some of these coefficients in some region of space x, y, t are complex 
quantifies, w is taken to be an analytic function in this region. 

The normal vek~ities bk and angles 0~k, formed by the normals to the wave fronts and the y axis, are 
given by the expressions 
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b k =(0 2 +~,2)-~, tgot k =0/~. k (k = 1,2) (1.4) 

The functions Xl and X2, represented by expressions (1.2), are branches of the algebraic function ~, 
uniquely defined on a Riemann surface, the form of which depends on the ratios of the elasticity 
constants. 

The branching points for the inner radicals of (1.2) are the points [4] 

0 ° = +[{M + ( 4 b d c  2 [c 2 - ( a  - d ) ( b  - d ) I ) ~ } I ( K I K 2 ) ] ) ~  (1.5) 

K 1  = a b  - ( c  - d) 2, K 2 = a b  - ( c  + d) 2 

M = (b + d)[(a - d)(b - d) - c 2] - ( a  - d ) ( b  - d ) d  

which may be complex, imaginary or real depending on the ratios of the elasticity constants. 
When N > 0 the branching points for the outer radicals of (1.2) are the points 01 = - a  -m when 

k = 1 and the points 02 = - d -~" when k = 2. In this case the Riemann surface consists of the planes 
01 and 02, respectively, with cuts (--a -m, +a -m) and (--d -m, +d-m). The planes are joined in a criss- 
cross manner along the corresponding cuts, connecting the branching points (1.5). If the branching points 
consist of two imaginary and two real points, the form of the Riemann surface is as derived previously 
([51, Fig. 1). 

On the edges of the cuts (--a -m, +a -m) and (--d -m, +d  -m) of the planes 01 and 02, the functions 
Xa and ~ have real values, and the functions (1.1) express real plane waves: quasi-longitudinal for 
k = 1 and quasi-transverse for k = 2, propagating in any directions. Along the parts (_a  -ta, __.**) 
and (+_d -m, +_.**) of the real axes of the planes 0a and 02 the functions Xl and L2 take complex values, 
and the functions (1.1) express complex quasi-longitudinal and quasi-transverse waves. 

Consequently, when N > 0, the quasi-longitudinal and quasi-transverse plane waves are expressed 
by the ftmctious (1.1) for k = 1 and k = 2, defined on the real axes of the 0x and 02 planes. Hence, 
when solving the problem in question there was no need to use the Riemann surface [1, 2]. 

The situation is more complex when N < 0. The outer radical of the function Xl has four branching 
points: 01 = - a  -m, 01 = --+d-m; the outer radical of the function L2 has no branching PPints. Of the 
branching points (1.5) two are real and two are imaginary, where the condition 0° 1 > d -m is 
satisfied for the real points. The function Xl is single-valued in the 01 plane with cuts (--a -m, +a-m), 
( _d  -m, _0  °) and (+_.0 0, _**) along the real axis and (__.002, __.i**) along the imaginary axis. The function 
X2 is single-valued in the 02 plane with cuts (-0 °, +0 °) and (_.+0 °, __.o.) along the real axis and (---002, 
+-.i**) along the imaginary axis. The Riemann surface consists of the 01 and 02 planes joined in a criss- 
cross manner along the edges of the cuts (_0  °, ___0-) and (--.002, -i-o) (Fig. 1). 

1/2 1/2 + 1/2 + 0 On the edges of the cuts (--a- , +a- ) and (_d-  , _0  1) of the 01 plane and (-0 °, +0 °) of the 02 
plane, the functions 2L 1 and 7~ take real values, and the functions (1.1) express real waves. On the parts 
(-+a -m, - d  -m) of the 01 plane the function 2~ 1 has imaginary values and on the parts (__.0 °, ___00) of the 
edges of the cuts of the 01 and 02 planes the functions 2L 1 and L 2 have complex values; the functions 
(1.1) express complex waves. 

We will fix the functions Xl and L2 in the 01 and 02 planes so that they are positive when 0 = il~, where 
13 is a fairly small positive quantity. Since the x and y axes coincide with the axes of elastic symmetry of 

Fig. 1. 
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the medium, it is sufficient to investigate the wave propagation for positive real values of 0. 
On the sections 

0 S 0 ,  S a - ~ ,  o ~ e 2 ~ o ~  (1.6) 

of the upper edges of the cuts of the 01 and 0 2 planes, the functions X1 and ~ are positive, and the 
right-hand sides of the second formulae of (1.4) increase monotonically from zero to the values 

tg (x., = -0, tg ct 2 = 0°/k2 (0 °) (1.7) 

The functions Ct.1) express real quasi-longitudinal and quasi-transverse waves propagating with 
continuously increasing angles (zl and ~ in the intervals 

0 -< oq < I"I/2, 0 < % ~ ct ° ((z ° < I"I/2) (1.8) 

The normal velocities (1.4) of the waves on the sections (1.6) are continuous functions, having the 
following values or, the boundaries of the sections 

br(0) = b ~, bj (a -~ ) = a ~,  b 2 (0) = d )~, b 2 (0 °) < d ~ (1.9) 

The nature of the change in the velocities depends on the values of the quantifies [4, 6] 

N I = a - d - c ,  N 2 = b - d - c ,  N 3 = ( a  - d ) ( b  - d ) -  c 2 (1.10) 

Since N1 < 0 when N < 0, the velocity of the quasi-longitudinal wave on the first part (1.6) decreases 
continuously and b > a when N2 > 0. If N2 < 0, the velocity of the quasi-longitudinal wave inside this 
section has a maxhnum. The velocity of'the quasi-transverse wave inside the second section of (1.6) 
has a minimum, since Ns > 0 when N < O. 

The extremal points and the velocities and directions of propagation of the waves with these velocities 
have the values 

0~ = [(b - n)/(ab - n 2 )]~, 0 ;  = [(b + m)l(ab - m 2)]~ 

b, (0~')= [(ab - n 2)/(a + b - 2n)] ~, b 2 (02) = [(ab - m 2)/(a + b + 2m)] ~ (1.11) 

tgo'. 7 = [(b - n)/(a - n)] y2, tg(x 2 = [(b + m)/(a + m)] y2 

m =: c - d ,  n =c  + d  

When the branching point 0 ° passes round from the upper edge of the cut (-0 °, +0 °) of the 02 plane 
of the Riemann surface to the lower edge of the cut (+d -1/2, +001) of the 01 plane, the inner radical 
of the function L2 changes its sign from plus to minus, and the function g2 takes the value Z1. The solutions 
(1.1)-(1.4), which express a quasi-transverse wave when k = 2, change to the solutions when k = 1, 
which are real plane waves defined on the lower edge of the cut (+d  -'v2, +0 °) of the 01 plane. These 
solutions have the same values at the branching point 0~. 

On the section 

d -Y2 <_ O, < O ° (1.12) 

of the lower edge of the cut of the 01 plane, the right-hand sides of (1.4) for k = 1 decrease monotonically 
for values on the boundaries 

tg e, = - ,  tg = o % , ( o  °) = o%2(o  °) 

bl(d -k~) = d ~ ,  b, (Op) = b2(O °) 

Consequently, the functions (1.1)-(1.4) for k = i on the section (1.12) of the lower edge of the cut of 
the 01 plane express real quasi-transverse waves propagating in the directions 

rv2 > ,x, > cq (o, °) = ,z2 (o °) (1.13) 
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with normal velocities 

d ~ _ > b  I >_b 1 ( 0 0 ) = b  2(0 O) (1.14) 

Graphs of the change in the normal velocities of the quasi-longitudinal and quasi-transverse waves 
as a function of the propagation direction are shown in Figs 2 and 3 by the continuous curves, while 
the dashed curves show the possible characteristic values of the normal velocities of the longitudinal 
waves in a liquid. 

On the upper edge of the cut (+d -1/2, +0 °) of the 01 plane of the Riemarm surface the function 2h 
takes negative real values, and the functions (1.1) for k = 1 take the form 

ul =u(fi?).  t, I =u ( f~ )  (1.15) 

u(tT{ )/(c07 h ) = v (~'l{ )/pi = w(Ca~ ) 

where 2q has the value (1.2), and represents quasi-transverse waves. The quasi-transverse waves (1.1) 
fork  = 1, defined on the lower edge of the cut (+d  -1/2, +0°1) of the 01 plane and (1.15) are symmetrical 
with respect to x. 

The direction of propagation of elastic va~rations is related to the motion of the energy in the deformed 
medium and is defined by the energy flux vector, which coincides with the radial (group) velocity vector 
[ 7]. Repeating the discussion given previously [8], we can express the projection of the energy flux vectors 
on to the coordinate axes for the ease in question 

(1.16) 

Taking conditions (1.3) into account, we can express the quasi-longitudinal and quasi-transverse waves 
(1.1), defined in the sections (0, +a -~2) and (0, +0°1) of the upper edges of the cuts of the 01 and 02 
planes, by the functions 

uk - - cO~w(C~) ,  u k = pkw(ff~) (1.17) 

Substituting (1.17) into (1.16) we obtain 

Sxk = -pOpkN k [ W ' ( ~ ) ] 2 ,  Sy t = _p~,kpkMk[w,(~ ~)]2 (1.18) 

N k = 2ado  2 + (ab + d 2 - c 2)~2 _ (a + d) 

I t 
o oJ/¢ , 

\ \  

""\"x \\ \ ,  
',j 

0 ao/~ d~  u¢ /z  

Fig. 2. Fig. 3. 
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M k = (ab ÷ d 2 - c 2)0 2 + 2bdZ 2 - (b + d) 

Since on the section (0, a -I/2) ZI > O, Pl < O, MI < O, while on the section (0, 0°i) Z2 > O, P2 < O, 
M2 < 0 the projections of the energy flux vectors onto the ordinate axis satisfy the conditions 

S~, = -pZtpkMk [w'(t~)]2 < 0 (1.19) 

for k = I and k = 2 on the sections (0, a -v2) and (0, 0°). 
We can similarly determine the components of the energy flux vector of the quasi-transverse waves 

(1.15), defined in the section (d -v2, 0 °) of the upper edge of the cut of the 01 plane 

Sxl = -p0p l  N I [w'(~]" )]2 ~ Sy I = P~'l Pl MI [w ' (~ l ' ) ]2  (1.20) 

where N1 and M1 are the values of (1.18) for k = 1. Since on the section (d -v2, 0 °) Z1 > 0, Pl > 0, 
M1 < 0, the projection of the energy flux vector of the waves (1.15) onto the ordinate axis satisfies the 
condition 

Syl = P~'I pIMI [ w ' ( f ~ ) ] 2  < 0 (1.21) 

It follows from conditions (1.19) and (1.21) that the projections of the energy flux vectors and the 
radial velocities of the waves (1.1) and (1.15) onto the sections considered where they are determined, 
have negative values. 

Henceforth, when solving the problem, the refracted quasi-longitudinal and quasi-periodic waves will 
be expressed using the functions (1.1) and (1.15), which ensure that the energy flows from the interface 
of the media y = 0 into the anisotropic medium y < 0. 

2. R E F L E C T I O N  AND REFRACTION OF L O N G I T U D I N A L  WAVES 

A plane longitudinal wave [2] 

U 0 = U(~'~), V 0 =V (['25); ~'0 = (l/a0 - 0 2 )  )~ (2.1) 

is incident from the liquid y > 0 onto an interface y = 0 with an anisotropic half-space. 
The normal vek~ty  and angles of incidence of the wave are given by the expressions 

b o = a~ = (~to/Po)~, tg ot o = 0/~, o (2.2) 

In the interval 

0 < 0 <_ ao ~ (2.3) 

the functions (2.1) represent a real wave with angles of incidence 

0 < ~o < H/2 (2.4) 

The qualitative picture of the. reflection and refraction process depends on the ratios of the elasticity 
constants of the contacting media and the nature of the change in the normal velocities as a function 
of the direction of motion of the waves in the anisotropic medium, causing a variety of different 
combinations in the distribution of the velocities and directions of motion of the secondary waves and 
in the excitation of complex waves, depending on the angles of incidence of the primary waves. An 
investigation of these problems is of some theoretical and practical interest and reduces to considering 
three fundamental cases. 

Case 1. The following condition is satisfied 

ao>a>d, i.e. a~)~ <a-~ <d-)~ (2.5) 

Since in the case of (2.5) the right boundaries of the sections (1.6) on the upper edges of the cuts of 
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the 01 and 0 2 p l a n e s  of the Riemann surface (Fig. 1) satisfy the condition a~ 1/2 < a -1/2 < 001, in the sec- 
tion (2.3) the refracted quasi-longitudinal and quasi-transverse waves will be represented by the ftmetions 
(1.1) with k = 1 and k = 2, respectively. 

The reflected longitudinal and refracted quasi-longitudinal and quasi-transverse waves represent real 
waves and have the following expressions [2] 

%o = (rt IR)u  (f~ 0 ), u oo = - (  fi IR)v ( f20 ) 

Uol = -(Zq cr21R)u(FZ ~ ), v ol = (Pl r21(~'oR) ) v (FZ~{ ) 

U02 = -(~,2cr31R)u(~"d~ ), II 02 = (p2ra/(~'oR))u (~'2) 

(2.6) 

where 

fi = c(alb) ~ (LI - ~'2 ){(P/Po)[(ab) ~ ~,, + 

2 +(C - d )  2 02~d + aboard ]~'0 - (ab) ~ (~q + ~'2)~., }~a 

r 2 = 2[a~ 2 + ( c - d ) ~ ,  2], r 3 =-2[a~  2 +(c -d)~ , ] ]  (2.7) 

R = c(alb) Y2 (~,l - ~,2 ){(P/Po )[(ab) ~ ~a + (c - d) 2 02~d + ab~2~d ]~'0 + (ab) y2 (~! + ~'2 )~a }~a 

~a = ( l / a - 0 2 )  ~ ,  ~d = (l/d -02) ~ 

( p k = a O 2 + d ' L k - I ,  k = 1,2) 

The normal velocities of the reflected and refracted waves and the angles of reflection and refraction 
are given by (2.2) and (1.4) and satisfy the sine law 

sin o~/bo = sin (Zoo/boo = sin Otol/bol = sin 0~02/b02 = 0 (2.8) 

The functions (2.6) represent real waves for angles of incidence (2.4) of the longitudinal wave (2.1), 
defined in the interval (2.3). When the angle of incidence of the longitudinal wave increases the angles 
of reflection and refraction of waves (2.6) increase continuously, irrespective of how the normal velocities 
vary as a function of  the direction of  motion, since in sections (2.3) and (1.6) the fight-hand sides of 
the second expressions of (2.2) and (1.7) increase continuously. 

We will consider the distribution of the velocities and directions of motion of  the primary and 
secondary waves as a function of the angle of incidence of the longitudinal wave when condition (2.5) 
is satisfied. 

Ifa~/2 > max bl, it follows from Figs 2 and 3and  the sine law that for any angles of incidence of the 
longitudinal wave corresponding to the interval (2.3), the velocities and directions of motion satisfy the 
conditions 

b o = boo > bol > bo2, (Xo = (Xoo> Otol > Oto2 (2.9) 

If the velocity of the quasi-longitudinal wave has extremal values on the boundaries of  the first section 
(1.6) (Fig. 2), then for N < 0 we have b > a. In this case, when the following condition is satisfied 

m a x  b I = b )~ > ao  )~ > a )~ (2.10) 

at a certain point 011 in the section (0, a-ire), the velocity of the quasi-longitudinal wave will be equal 
to the velocity of the longitudinal wave. 

If  the point 011 belongs to the section (0, a~la), then for angles of incidence of the longitudinal wave 
defined in the section (0, 011), the following conditions are satisfied 

bol > bo = boo > b02, Otol > Oto = ¢too > Oto2 (2.11) 
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and in the section (01~ a~ ~z) conditions (2.9) are satisfied. When 011 > a0 lie, condition (2.11) is satisfied 
in the section (0, a~'~). 

If the velocity bl inside the first section of (1.6) has the greatest value (1.11), and the least value on 
the left boundary of the section (Fig. 3), then when (2,5) holds we may have the condition 

max b I = b I (O~) > a~ A > a )~ > min b I = b )~ (2.12) 

• • • * -1/2 • In the section (0, 01") the velocity ba increases continuously, while m the section (01, a0 _) it decreases 
continuously. At the points e l l  and 012, which belong to the sections (0, 01") and (O~, a-Xrz), the velocity 
bl(0) = a ~ ,  and the right boundary of Section (2.3) is situated on the section (012, a-~) .  

Consequently, ~ar angles of incidence of the longitudinal wave given in (2.3), in the section (0, 
011) conditions (2.9) are satisfied, in the section (011, 012) conditions (2.11) are satisfied and in the 
section (On, a~ 1/2) conditions (2.9) are satisfied. If (012, a~1t2), then in the section (0, 011) conditions 
(2.9) are satisfied, while in the section (011, a~ u2) conditions (2.11) are satisfied. 

If the way in which the normal velocities vary differs from that shown in the graph in Fig. 3, only in 
the sense that b 1/2 > a 1/2, then when (2.5) holds the following conditions may be satisfied 

max b I = b 1 (O~) > a M > b )~ > min b t = a )~ (2.13) 

max b I = b I (e~) > b )~ > ao ~ > min b I = a ~j (2.14) 

In this case, when (2.13) is satisfied, conditions (2.9) are satisfied in the sections (0, 011) and (01  
a0-~2), and conditions (2.11) are satisfied in the section (011, 012). If (012, a~lt2), conditions (2.9) are 

1/2 satisfied in the section (0, 011) and conditions (2.11) are satisfied in the section (011, a~ 3. 
1/2 * I /2  When condition (2.14) bl(0) = a0 is satisfied at the ._po~t 011 in the section (01, a- ), the right 

boundary of the interval (2.3) belongs to the section (011, a- ). Conditions (2.11) correspond to angles 
of incidence of the longitudinal wave in the interval (2.3) in the section (0, 010, and conditions (2.9) 
in the section (011, a~1~. When (011 > a~1/2), conditions (2.11) are satisfied in the section (2.3). 

Case 2. When 

a > a  0>d ,  i.e. a - ~ < a o  )~<d -~ (2.15) 

the right boundaries of sections (1.6) on the upper edges of the cuts of the 01 and 02 planes of the 
Riemann surface (Fig. 1) satisfy the condition 

o 

a-~  < ao ~ < e I 

In the range (2.3), in which the incident longitudinal wave (2.1) is defined, the quasi-longitudinal and 
quasi-transverse waves are expressed by the functions (1.1) with k = 1 and k = 2, respectively. 

The functions X1 and ~ have real values in the section (0, a -1;z) of the range (2.3). The solution of 
the problem is given by the functions (2.1) and (2.6), which represent real waves. 

Ifb > a (Figs 2 and 3), the velocities and directions of motion of waves (2.1) and (2.6) satisfy conditions 
-1/2 (2.11) in the section (0, a ). 

When b < a (Fig. 3) the following condition may be satisfied 

max bl = bl (0~) > a ~ > a0 ~ > min bl = b )~ 

The point 011 in w]hich bx(0) = a0 v2 belongs to the section (0, a-1~). In the section (0, e l l  ) conditions 
(2.9) hold for the velocities and directions of motion of the waves, while conditions (2.11) hold in 
the section (011, a-t/2). 

When 

min b I > ao ~ > d ~j 

(Figs 2 and 3) conditions (2.11) hold in the section (0, a-U2). 
The function 2q takes imaginary values in the section (a -v2, a~ 1/2) of the range (2.3). The solution 

of the problem can be expressed by functions of a complex variable [2] 



210 I .O.  Osipov 

Uo = R e [ u l ( ~ ) ] ,  Uo = Re[vl (D~)]  

uoo = Re[(~ / R*)u~(f~)], V0o = Re[-(r~* / R)v,(flo)l 

Uoi = Re[(i~,]cr~ I R*)ul (~) ] ,  Ool = Re[(pff~/(~.oR*))vl(fl~)] (2.16) 

u02 = Re[-(~,2cr3* / R*)u~(f~)], v02 = Re[(p2r~*/(~,oR*))Ul(~"z'~)] 

~ = t + Ox - i~,]y 

The quantities r7 and R* are given by (2.7) when 

~a = -i(  02 - 1 / a) ~ ,  ~'1 = -i~,] 

~,] = { - H + [ H  2 - ( l / a - O 2 ) ( l / d - O 2 ) ( a / b ) ] ~ }  Y2 (2.17) 

The functions ua and Vl are regular functions in the upper half-plane of the complex variable. The 
refracted quasi-longitudinal wave is a complex wave with an imaginary phase velocity in the direction 
of the y axis, while the remaining waves are real. 

The following conditions are satisfied for the velocities and directions of motion of the real waves, 
defined in tile section (a q/z, a~ 1/z) 

b0 = boo > bo2, 50 = 0~00 > GC02 (2 .1s)  

Case 3. Suppose the following condition is satisfied 

a > d > a  o, i.e. a - ~ < d - ~ < a o  ~ (2.19) 

In sections (1.6) of the upper edges of the cuts of the 01 and 02 planes of the Riemann surface (Fig. 
1), the functions (1.1) represent quasi-longitudinal and quasi-transverse waves when k = 1 and k = 2, 
respectively, propagating in directions (1.8). In section (1.12) of the upper edge of the cut of the 01 
plane, the function (1.1) takes the values (1.15) when k = 1 and represents quasi-transverse waves 
propagating in the directions (1.13). 

Consequently, the incident longitudinal wave (2.1), defined in the section (d -I/z, 0°), excites two 
refracted quasi-transverse waves. 

In the section (0, a -l/z) of the range (0, a~ l/z) the solution of the problem is expressed by the real 
functions (2.1) and (2.6). The refracted waves are quasi-longitudinal and quasi-transverse waves. 

112 1/2 1/2 In the section (a- , d- ) of the range (0, a~ ) the solution of the problem is expressed by functions 
of the complex variable (2.16). The refracted quasi-longitudinal wave is a complex wave and the 
remaining ones are real. 

On changing to the section (d -1/2, 0"1) of the upper edges of the cuts of the 01 and 02 planes of the 
Riemann surface, the functions (2.16) take real values. The functions u01 and v01 become real and 
represent a quasi-transverse refracted wave. 

In the sections (d -l/z, a~ v2) when a~ 1/z ~< 0~ the solution of the problem is expressed by real functions 

Uo = u(ta ), Vo = v  

Uoo = (rl* I R*)u(~o), V0o = -(fi* / R*)v ( ~ )  

u01 = (cr~. l I R)u(~ I ), u 01 = (Pl r~ / 0.o R~ ))v (f~l) 

U02 ---- --(Cr;~, 2 / g* )u(~'~ ), u02 = (p2F; / (~,0R*))o (~-'~) 

(2.20) 

The quantities r* and R* are given by (2.7) with ~,a replaced by - ~,1 and 

~u = -i(  02 - 1 / a) ~ ,  ~a = - i(  02 - I / d) ~ 

and have real values. 
In this case the functions Uok and V0k (k = 1, 2) represent real refracted quasi-transverse waves having 
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different normal velocities and angles of refraction. The normal velocities and entry and exit angles of 
the waves are given by (2.2) and (2.3), and the sine law (2.8) is satisfied. By (1.19) and (1.21) the radiation 
principle is satisfim1 and the refracted waves transfer energy from the interfacey ffi 0 into the anisotropic 
medium y < 0. 

When a~ ~ ~ 0 ~ in the section (0 i, ao 1~) the angles of incidence of the longitudinal wave (2.1) exceed 
the critical angle with respect to the refracted quasi-transverse waves and the functions ~ and ~ take 
complex values. 11ae solution of the problem is expressed by functions of the complex variable 

/40 = Re[u I (~"~)], I/o = Re[u ] (£~;)] 

Uoo = Re[(~ / R)um(f~)], t'oo = P-,e,[-(~ / ,~)~(~)] 
U01 = Re[(~,ic~ 2 / R)ul(~7"~l')], I:01 = Re[(Plr 2 /(;~oR))lYl(hl) ] 

u02 = Re[-(~2cF 3 / R)u 1 (fi~)], u 02 = Re[(/52~ 3 / (~,oR))v I(fi~)] 

(2.21) 

The quantities/~k, ~ and/~ are given by (2.7) with 

Xk = ( -1 )*  ~.~ 

~'k = { H  - ( - 1 )  t i [ ( 0  2 - 1 / a ) ( 0  2 - 1 / d)(a / b) - H 2 ])~ }Y2 

~a = - i (  02 - l / a )  )~, ~d = - i (  02 - 11 d)  )~ 

The quasi-transverse refracted waves u0k, v~ (k = 1, 2) are complex waves with complex phase velocities 
in the direction of the y axis. 

We will investigate the distribution of the velocities and directions of motion of the primary and 
secondary waves in the section (0, a~ ~ )  when condition (2.19) is satisfied. 

In the graph showing the change in the normal velocities bl and b2 as a function of the directions of 
propagation of the quasi-transverse waves (Fig. 2), the values of these velocities, defined at the 
boundaries of the sections (d -~2, 0 i)  in the 01 and 02 planes of the Riemann surface (Fi~. 1), are denoted 
by the small circles as follows: (1) is the velocity b2(d-~'), (2) is the velocity b2(0 1) = bl(0~), and 
(3) is the velocity bl(d -lr2) = d t/2. 

Graphs of the change in these velocities as a function of 0 in the sections (d -~, 01) are shown in 
Fig. 4. In this section the velocity b2 increases continuously, the velocity bl decreases continuously and 
they are equal when 0 -- 01. 

It follows from Figs 2-4 that when 

/~(d - '~ )  = d ~ > a~ > b,(O;)  = bz(O;) 

sa 8/ 

Fig. 4. 
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the velocities of the refracted quasi-transverse waves are equal to the velocities of the longitudinal wave 
at the points 021 and 012, defined by the conditions b2(021 ) -- a~/2 and b1(012 ) -- ao ~ ,  where the conditions 
a~ m < O~ or ao -1/2 > 0 1 may be satisfied. 

In this case, for angles of incidence of the longitudinal wave defined in the range (0, a~ m) for velocities 
and directions of motion of the primary and secondary waves the following conditions are satisfied: in 
the section (0, 021), the conditions 

b01 > b02 > bo = boo, txOl > ¢t02 > Cto = Ctoo (2.22) 

in the section (021 , a-m), conditions (2.11), in which box are the velocities of the refracted quasi- 
longitudinal waves, in the section (a -m, d-m), conditions (2.18), in the section (arm, 012), conditions 
(2.11), and in the sections (012, a~ m) when a~ 1/2 < 0~ and (012, 0~) when a0 -m > 0~, conditions (2.9), in 
which bl0 are the velocities of the refracted quasi-transverse waves. 

When 

b l ( 0 ~ ) - - b 2 ( 0 ; )  > ao ~ > b2(d  - ~ )  

the velocities of the refracted quasi-transverse waves are equal to the velocities of the longitudinal wave 
at the points 021 and 0:~ defined by the equation b2(0) = ao m, where the condition ao -m > 0~ is satisfied. 
For velocities and directions of motion of the primary and secondary waves in the range (0, a~ ta) the 

-1/2 following conditions are satisfied: in the section (0, 021), conditions (2.22), in the section (021, a ), 
conditions (2.11), where b01 are the velocities of the refracted quasi-longitudinal waves, in the section 
(a-m, arm), conditions (2.18), in the section (arM, 022), conditions (2.11), and in the section (022, 0~), 
conditions (2.22), where b01 are the velocity of the refracted quasi-transverse waves. 

When 

b2(d-~) > ao ~ > b2(O[) = minb 2 (2.23) 

the points 021 and 822 belong to the sections (0, 8~) and (8~, arm). If 822 < a -M, conditions (2.22) are satis- 
fied in the sections (0, ~1) and (022, a-m), and conditions (2.11) are satisfied in the section (021, 022). 
In the section (a -m, ar'~') we have the conditions 

bo2>bo=boo, o ~  > ff.o = Oq)o (2.24) 

When (022 > a -1/2) conditions (2.22) are satisfied in the section (0, 021), while conditions (2.11) are 
satisfied in the section (021, a-m). Here everywhere b01 is the velocity of the refracted quasi-longitudinal 
wave. 

In the range (a -1/2, arM) conditions (2.18) are satisfied for real waves in the section (a q/2, 022) and 
conditions (2.24) are satisfied in the section (022, arM). 

When (2.23) is satisfied, conditions (2.22) are satisfied in the section (d -m, 0~) where b01 is the velocity 
of the refracted quasi-transverse wave. 

When 

rain b 2 = b 2 (O;) > ao ~ 

1/2 1/2 o conditions (2.22) are satisfied in the sections (0, a- ) and (d- , 0 1). The velocity b01 in the section (0, 
1/2 1/2 a- ) is the velocity of the.refracted quasi-longitudinal wave, while in the section (a t- , 0 1) it is the 

velocity of the refracted quasi-transverse wave. Conditions (2.24) are satisfied in the section (a -m, a r la)  
for real waves. 

In conclusion we note that a complete solution has thus been obtained for the problem of the reflection 
and refraction of longitudinal waves at the interface between a liquid and a solid anisotropic medium 
which satisfy the condition N < 0. 
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